Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis.

نویسندگان

  • Jungmin Park
  • Youn-Sung Kim
  • Sang-Gyu Kim
  • Jae-Hoon Jung
  • Je-Chang Woo
  • Chung-Mo Park
چکیده

Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages.

AUXIN RESPONSE FACTORS (ARFs) are transcription factors involved in auxin signal transduction during many stages of plant growth development. ARF10, ARF16 and ARF17 are targeted by microRNA160 (miR160) in Arabidopsis thaliana. Here, we show that negative regulation of ARF10 by miR160 plays important roles in seed germination and post-germination. Transgenic plants expressing an miR160-resistant...

متن کامل

Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis.

The transition from dormancy to germination in seeds is a key physiological process during the lifecycle of plants. Abscisic acid (ABA) is the sole plant hormone known to maintain seed dormancy; it acts through a gene expression network involving the transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3). However, whether other phytohormone pathways function in the maintenance of seed dormancy...

متن کامل

Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea.

The NAC (NAM, ATAF, and CUC) proteins share a highly conserved NAC domain and constitute a large family of plant-specific transcriptional factors. We have isolated a drought-induced NAC gene from Arachis hypogaea, named AhNAC2 (Arachis hypogaea NAC2) but its specific role remains unknown. In this study, we found that transgenic Arabidopsis overexpressing AhNAC2 lines were hypersensitive to ABA ...

متن کامل

ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis

NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses. ThNAC13 is a nuclear protein with a C-terminal transactivation domain. ThNAC13 can bind to NAC re...

متن کامل

Involvement of auxin in the responses of wheat germination to salt stress . Fateme Masoudi Khorasani, Hilda Besharat and Homa Mahmoodzadeh

The effects of salt stress and auxin on germination factors of three wheat cultivars viz. Sepahan, c-84-8, and c-83-1 were studied under controlled conditions. Germination was assessed using three replicates of 25 seeds in a factorial lay out in Completely Randomized Design (CRD) testing combinations of three levels of salinity (0, 4, and 8 dSm-1 NaCl) and three levels of auxin (0, 0.5, and 1 p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 2  شماره 

صفحات  -

تاریخ انتشار 2011